Ocean acidification and its biological impacts

Shallin Busch, Ph.D. Northwest Fisheries Science Center National Oceanic and Atmospheric Administration

Earth's history shows us that communities change

often in response to changing climatic conditions

What will ecological communities of the future look like?

Physiological processes are sensitive to carbon dioxide and pH

OA can have many effects

Respiration

Development

Behavior/Nervous system

Growth

A natural experiment in Italy

Low CO₂

High CO₂

J. Hall-Spencer

What we know

What we can infer

Three commercial shellfish species

pH 8.21

Pacific oyster

pH 7.42

Kurihara et al. 2007

Talmage and Gobler 2010

West coast oyster failure

- Willapa Bay: Wild oysters had low levels of reproduction for 7 years
- Hatcheries: Production of larvae reduced over last 6 years
- Correlations of failure with pH

Oysters in Netart's Bay

Barton et al. 2012

Barton et al. 2012

Brunner

Brunner/Waldbusser, OSU

Species response to pCO₂ can vary

Eastern oyster

Suminoe oyster

Miller et al 2009, photos from National Geographic

Why focus on larvae and juveniles?

Vellutini and Migotto 2010

Research on commercial shellfish

Crab development sensitive to OA

Shelled pteropods: planktonic snails

Sensitivity of other zooplankton?

There will be surprises!

Munday et al. 2009, 2010; Simpson et al. 2011; Nilsson et al. 2012

Sun et al. 2011, Fu et al. 2010

From chemistry to biology...

Exposure (timing, duration)

Laws of physics

Experience

Genome

Seawater pH is changing very quickly

Pelejero et al., 2010

What is the fate of marine communities under ocean acidification?

Complex systems have complex responses

http://marinebio.org/Oceans/Biotic-Structure.asp

30% of Puget Sound species calcify

Busch et al., in revision

OA will affect marine food webs

Species affected by OA will also be affected by predatorprey interactions

OA will affect marine food webs

OA will impact species unaffected by changes in pH via predator-prey interactions

OA will affect marine food webs Which species are affected by OA will drive the nature of the food web response

OA will affect marine food webs

OA impacts on just one or a few species can have big effects on the food web and ecosystem services

System responses

Impacts of multiple stressors

Harley et al., 2012

What we know

- The ocean is acidifying rapidly
- Some local species will be sensitive to OA
- Biological responses to OA are variable
- Impacts of OA will ripple through food webs
- Other stressors can exacerbate response to OA

